EXTREMESMARKD

Beyond the “descriptive vs. procedural™ distinction

Wendell Piez
Mulberry Technologies

ABSTRACT

There has come to be a consensus that the “procedural vs. declarative”
distinction is useful, if only as a rough guide, in the design of markup
languages. To understand how and why this is the case, we need to ask
questions that are usually left unasked when this principle is proposed,
such as “is it the model (the schema) that we consider to be descriptive,
or the tagged document?” or, more deeply, “why do we validate our
markup anyway?”

A number of our fundamental assumptions are not always true.
Sometimes a schema might be more than a “go/no-go gauge”, becoming
a diagnostic and investigatory instrument. Sometimes marked-up
documents look backward (as representations of something pre-existing),
not just forward to processing. Sometimes semantic opacity is a feature,
not a bug. In order to understand the power of markup languages, it is
helpful to keep in mind that they are both technologies, and a species of
rhetoric. New characterizations and categories of markup languages may

help focus our design efforts.

197

Wendell Piez

Why are we still talking about the “descriptive/proce-
dural” distinction? The conception continues to be a focus,
because it continues to have explanatory power. Yet at the
same time, it proves to require quite a bit of refinement when
we look at the incredibly broad spectrum of different markup
languages, and markup language applications, that are now
proliferating. Descriptive? Of what? Separation of format
from content? What's content, and what’s format? Apart from
its format, to what do we refer to determine what “content”
is; how do we specify it, and how do we go about designing
tags for it? What kind of thing are we trying to model, anyway?

The traditional arguments around the “descriptive/pro-
cedural” distinction! have detailed a number of advantages to
descriptive markup languages (also loosely identified as “ge-
neric” languages) over their procedural cousins: scalability,
reusability of data, and so forth. While these advantages are
demonstrably real, nonetheless the evolution of XML tech-
nologies, especially in such applications of XML as XSLFO,
SVG, SMIL, or even XSLT'? shows that the opposite ap-
proach to designing a markup language also is playing an
important role. Sometimes, it is clear, a procedural language
is exactly what we want.

At the Extreme 2000 conference on markup technolo-
gies here in Montreal, Allen Renear picked up the task of
scrutinizing the opposition, proposing an alternative frame-
work for which he introduced terms from linguistics and
speech-act theory. I'll return to Renear’s argument; but in
order to get at these issues at a deeper level, I start by pointing
out one begged question, and potential ambiguity, generally
at issue when we assert these categories. When we describe
a “markup language” (or a “tag set”) as descriptive or pre-
scriptive, are we talking about model or instance? That is, are
we talking about the proposed, implied or asserted semantics
of an abstract model for a document type (classically, as for-
malized by a DTD); or are we making generalizations about
the tags in use, that is the (implied or effective) semantics of
element and attribute types as instantiated in documents? It
matters which one of these we are describing, not simply
because they may be different (in the ideal case they should
perhaps not be), but because the very fact that the two things
(DTD and document) might possibly end up “meaning”
something different in practice, raises questions about the

1. Two “canonical” references I consulted ([SGML Handbook]| and [Gen-
tle Introduction]) make the distinction between “descriptive” and “proce-
dural” approaches. To label the different design strategies “declarative” and
“procedural”, while observing a distinction with a history in computer sci-
ence, is evidently problematic in this context, mainly since those terms are
so relative. In this paper, as I am deliberately reflecting on the distinction as
traditionally rationalized, I'll use the terms “descriptive” and “procedural”
when referring to the traditional dichotomy, and occasionally loose synonyms
such as “generic” or “presentational” when it serves my purposes (one of
which is, of course, to clarify what we might mean when we use these terms).
2. Note that in this context, XSLT is procedural as a markup language (the
tag set is closely bound to a set of processing requirements), while being
declarative as a transformation language. This in itself is an indication of
how relative these terms are.

relation between model and instance. In the real world (not
to put too fine a point on it), sometimes users “mean” tags in
ways not intended by designers, and this fact bears directly
on the problem because it indicates how a model’s “descrip-
tion” of a document type may not be exactly what a docu-
ment’s own tags “describe” (or may be purported to describe,
depending on who you talk to).

Now any designer will seek, and will probably assume,
that the semantics of model and instance should be the same,
or at least not at cross-purposes. When they are, we call it “tag
abuse”, thus begging the question by simply handing author-
ity for correctness to the designer’s “intent”, whether stated
or implied. In fact, since we generally design models first and
write instances later, it is a design goal, necessarily implicit
and always assumed, that the model be complete and well-
fitted enough to the problem domain, that its semantics® can
be effectively reflected in instances without strain. But it may
also be that to engineer a system in which this ideal may be
realized (or nearly realized), we had better come to an un-
derstanding of how the model and the instance relate to each
other not just in theory as an objective, but also in practice,
where things always seem to have at least the potential of
falling short, and where nothing is so certain as the human
capacity to introduce uncertainty through creative adapta-
tion. I will suggest that model and instance need not always
relate to each other in the same way; and in fact that the way
requirements dictate they must relate to each other in any
given application of a markup language, has a direct impact
on the suitability of different strategies available to the de-
signer. Since these strategies are commonly framed by distin-
guishing descriptive vs. prescriptive, declarative vs. proce-
dural, or any of several other oppositions down to “separation
of presentation [or format] from content”, it is ultimately this
distinction that we are illuminating.

To ask how model and instance relate to each other is to
ask, in a very general way, about the process and role of what
we usually call validation, that is the process by which model
is applied to instance. (It is not the only such process; but the
nature of validation—and usually, its purpose—is such that
it can be taken to stand in for others.) So the first thing we
need to consider is what validation is and why we do it.

WHY IT MATTERS WHAT “VALIDATION" IS

What is “validation”? As soon as asked, it turns out that this
is very much a live question. XML and XML -based technol-
ogies have lately been serving as an incubator for all kinds of
new approaches to validation. Some seck merely to recast

3. Note here I specifically mean the implied semantics of the model, not
any behavioral or operational semantics that may be actuated in code. As
Robin Cover points out, between DTD and the markup constructs as im-
plied by the syntax, SGML/XML is a fairly weak format for specifying the
latter [Cover 1998]. We are always free, however, through names, relation-
ships, or explicit documentation, to assert informal “human” semantics: to
say, that is, what we think we mean.

198

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

inherited notions of validation into new forms (presumably
more tractable), some seek to enhance them with capabilities
of alternative validation regimens, and some may go in en-
tirely new directions. To say nothing of non-XML approaches
(and I hope we see plenty of innovation on this side as well,
insofar as there are certainly significant features of texts and
interesting problems to which XML does not easily lend it-
self), in XML we have well-formedness checking, DTD val-
idation, XML Schema, RELAX, TREX, XML-Data Reduced,
Schematron, Examplotron, etc. etc.

It is not my concern here to consider these in any detail,
or even to distinguish between them, except to point out the
interesting (and significant) fact that they do not all take the
same thing as their object of examination. Basically, when we
validate, we take an instance (an “XML document”) and a
model (the “schema” or “specification”), and compare these
for purposes of saying whether the instance conforms to the
model, or in what ways it fails to conform. But some of these
approaches work on an XML document as a text entity (a
sequence of alphanumeric characters, some of which consti-
tute data, some of which constitute markup, as per the XML
Recommendation [XML 1.0]); while others operate on some
kind of more complex structure, typically a document object
or “infoset” held in memory. An important aspect of this is
how the formalization in XML of well-formedness gives us a
new platform on which to build and standardize validation
techniques. A definition of “well-formed” (as distinct from
“valid”) brings with it the capability of doing what could be
called a “plain parse”, rendering a sequence of characters into
an abstract information set without otherwise concerning our-
selves with the higher-order semantics of elements and attrib-
utes. This is important because we may not know or care
about such higher-order semantics every time we process.
And when we do, testing the conformity of an XML docu-
ment to any particular semantic profile (however represented)
becomes, properly, just one more kind of processing, albeit
of a distinctive kind (or to a specific end). Thus validation,
considered in light of its purposes and often its methods, is
actually closer to querying, say, or to transformation, than it
is to parsing as such.

The proliferating approaches to validation also demon-
strate that (among other things) any XML document—
whether considered as a stream of characters or as an abstract
information set— potentially exhibits a range of different fea-
tures or characteristics which we might be interested in test-

ing:

* Constraints on structure of elements and attributes by
type (“a head is permitted inside a chapter, but a chapter
is not permitted inside a head”).

* Conformity of data elements (element content or attri-
bute value) to specific lexical or other requirements: data
type integrity; “authority control”

* Referential integrity of links and pointers

e efc. ete.

Any or all of these might be considered to be properly
within the realm of validation; and more to the point, the list
is as open-ended as we wish it to be.

Validation and workflow: strict validation

The intention or purpose of validation is to subject a docu-
ment or data set to a test, to determine whether it conforms
to a given set of external criteria. Validation may thus be dis-
tinguished from processing in general, which may not bother
to conduct any such tests (or which may use other tests). It is
precisely because the range of features and characteristics in
which we are interested, and which we need to be able to
constrain, is so open-ended, that testing becomes a useful
thing to do in practice. (If it weren’t, our tools could all be
built so as not to need tests.) Our need to test is simply ex-
plained and understood (so much so that it rarely needs to
be explicated): if there exists a point in a process where it is
less expensive to discover and correct problems than it is to
save the work of testing and fix at later points, it is profitable
to introduce a test. The ideal workflow, that is, is one in which
we make any correction or adjustment to the materials being
processed at the point where it is easiest and least expensive,
making allowances for the expense of running tests. This as-
sumes, of course, a workflow that is sufficiently defined to
make this possible.

We validate, that is, because we want to know in advance
of something whether our data set conforms to a set of spec-
ified requirements. Notice a key concept we have introduced
here: such an operation only makes sense, and only becomes
necessary, in an articulated workflow. Validation, that is, is a
type of “quality assurance” applied at a particular stage in
processing. We need downstream processing to be predict-
able, and wish to engineer away, to whatever extent we can,
any possibility of having to decide how to resolve or render
any given anomaly (however interesting it may be) at a later
stage of processing. Rather, we want to invest energy now in
assuring that our data already conforms to a set of clearly-
understood criteria.

In fact, this is nothing more than the application of a
simple rule of industrial engineering, here applied to infor-
mation systems. In effect, we are designing a process (even if
a simple one)—an assembly line. Validation provides us with
what is called a “go/no-go” gauge.

This is not merely an analogy. If we look at the begin-
nings of mass production technologies, we find a significant
transition occurs in the nineteenth century with the devel-
opment of the“American System of Manufacture”.* What dis-
tinguished this approach to mass production from previous
efforts is that the ancient principle of division of labor was

4. As it was dubbed at the Crystal Palace Exhibition in London in 1851,
where the arms manufacturer Colt demonstrated interchangeable parts.
Needless to say, there is nothing inherently “American” about the principle
(an idea that had been around, in Old and New Worlds, for many decades)
or its application.

Extreme Markup Languages 2001

199

Wendell Piez

joined with a new one: making the component parts of the
product to be interchangeable. Division of labor, of course,
has been practiced for many centuries and in a range of so-
cieties worldwide. (Nor is it limited to human culture, being
found also in the natural world.) But by itself, division of labor
is not sufficient to win the economies of scale that result from
modern manufacturing methods. As long as parts were not
interchangeable, production of any manufactured item had
to be done on a piece-by-piece basis, each piece being
unique. Only when the individual components of a manufac-
tured item were submitted to quality control mechanisms,
such as jigs, gauges, and quality checkpoints, could higher-
order economies be realized.”

A “go/mo-go” gauge is a device used precisely to provide
such a check. The utility, and ubiquity, of such a device is
instantly recognizable to anyone working with a complex
workflow —especially a process which already involves a com-
plex division of labor or differentiation of roles.®

Although they are no longer physical objects, we test our
information sets against abstract specifications for the same
reason that in a factory, the machine tools are set up to mill
parts to exact specifications, and are frequently tested (the
tools themselves, that is) to reassure conformity. In fact, the
markup industry’s leaders have unerringly, if not always de-
liberately, been proponents of open standards for markup
technologies for the exact reason (among others) that it is
standards-based interchangeability, when applied to infor-
mation objects, that provides us with the coveted advantages
for our data of vendor- and application-independence, of
modular architectures and layered systems, commodity tool
markets, and long-term data stability. (Not that any of these
things become easy to achieve even on a standards basis: but
at least with standard ways of judging correctness, there is
some hope for them.)

Whenever a validation technology is applied this way, |
think it appropriate to call it “strict”: I want to convey that it
proceeds by posing a binary choice: thumbs-up or thumbs-
down. Note that this does not indicate anything about what,
precisely, is being validated (structures, data types, referential
integrity etc.), or even how extensively, but rather the manner
of and rationale for validation. The expectation is that if a
document instance fails to validate, there is something wrong
with it, and it will be diverted away from the main workflow
in order to be “fixed”.

Strict validation is very usefully decoupled completely
from specific applications. (The measurements of the parts
of the gun may be tested apart from the gun itself.) The effect
can be to loosen the binding between stages of the process or
layers of the system, allowing agents to work more indepen-
dently. (Gun parts can be manufactured in one place and

5. See [Hounshell 1984]

6. A significant detail about gauges used in machine tooling is that they
may be crafted, and must be maintained, by hand. In effect, the craft shifts
from the creator of each individual product, to the industrial engineer who
develops a product line.

assembled in another.) “Can we process this in our system?”
An electronic document, like any other manufactured com-
ponent, must satisfy strict constraints in order to assure pre-
dictability downstream; but if we can validate apart from the
eventual application, the producer of the document on one
side, need not have any knowledge or interest in the operation
to be run on the other. This decoupling creates opportunities
for reuse: the familiar hub-and-spoke architecture —with a
generic format in the center and different formats for pro-
duction or interchange on the outside—becomes practical.
In many cases, validation is therefore useful (as has not es-
caped notice) for specifying contracts, as the mechanism for
a gateway (to an authenticated “safety zone”), or as a “seal of
approval”.’

While challenging to engineer and document, markup-
based information systems that routinely subject their data
sets to such rigorous specification and testing—and especially
when built to standard specifications, enabling them to take
advantage of commodity tools—have again and again proven
to be both scalable, and more flexible over time, than single-
layered systems handling media only in presentational (or
application-specific) formats.® The principles underlying this
are exactly those that allow a factory to become more efficient
and productive than individual craft workers, once basic prob-
lems of workflow, parts specification, machining and confor-
mance testing are dealt with.”

When we have the capability to validate strictly over an
entire data set, we are in a position to benefit from economies
of scale otherwise impossible to achieve. Moreover, a system
that engineers for both division of labor, and interchange-
ability of components, can more readily evolve to support
even more complex workflows of information, engaging
agents in all their different roles: producers, editors, sponsors,
designers, interpreters, agents, brokers, aggregators, reviewers,
readers, customers. (Note that these jobs are already finely
distinguished, because there are already a multitude of ways
information can be passed, interpreted and processed, even
when unassisted by automated machinery.)

7. This was especially the case in systems like those for which markup
applications were first developed: a formatter, for example, running replace-
ment macros over a marked-up text, has to work with a narrow range of
structured inputs; but by its very nature (it must use available resources to
process what's there and not expend resources on exception handling), it is
not coded to analyze abstractly whether a given data set’s markup conforms
to the expected pattern. The advantages of decoupling are here, that limited
processing power can be applied strategically to one job at a time. Decou-
pling provides similar advantages when processing is distributed across or-
ganizations, workflows or a supply chain.

8. Contrasting approaches would be dedicated word processors, which are
generally only suited for end-to-end processing by a single person and not
for complex editing systems with demanding layouts; or virtually any pub-
lishing system for print or the web, which (except experimentally) have only
served to automate the very tail end of production.

9. It may be that this can even serve as an indicator of those kinds of pro-
cesses that are receptive to automation. For example, in the case of elemen-
tary education, can we define “workflow, parts specification, machining and
conformance testing” sufficiently to automate it? Do we want to?

200

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

Figure 1 A go/no-go gauge, with accompanying jig

The gear-shaped device is a wire gauge. Either a length of wire is a specified thickness, or it is not. Pictured with the wire gauge is a draw plate, used for drawing out
wire of different gauges (thus serving as a jig). The draw plate must necessarily conform to the gauge in its measurements (and be checked from time to time to make sure

it has not worn).

A DTD or formal schema functions as a gauge when we use it to perform strict validation, as a jig when we use it to configure, for example, a structured editing tool.
Thanks to B. Tommie Usdin for lending these beautiful examples of the tool-maker’s art.

Introducing a validation regimen is useful, and some-
times necessary, precisely because it stretches processing
along a time frame, making it possible to encapsulate tasks,
divide labor into roles, and systematize and routinize pro-
cessing. In an automated system in which a document may
take many forms in its passage —from authored drafts to edi-
torial cuts to assembly to formatting and presentation for
many media, through a range of various post-publication
transformations including indexing and aggregation, only af-
ter many changes to end in the morgue or archive, or perhaps
never ending at all but persisting as part of the cultural cur-
rency, like Shakespeare’s plays or Lincoln’s Gettysburg Ad-
dress—dependable processing could simply not happen with-
out validation. Albeit informally and manually, it happens in
paper-only information systems all the time. Appropriate val-
idation is exactly the practice that makes it possible not to be
applying human intelligence repeatedly to mindless process-
ing tasks, or to resolving (inefficient) decision-making tangles.
Large complex systems learn this the hard way, even when
they have lots of cycles to burn. Validation allows human
intelligence to work better because it only has to concern
itself with one set of standards at a time, not with all standards,
for all conceivable uses or needs, at every point in the process.

And by supporting interchangeability, external means of
validation provide a foundation for an entire economy, be-
cause they introduce network effects among applications. So
we see that XML applications, unlike older applications based
on proprietary formats, work not to compete with each other,
but rather to complement one another, since each can work
in different ways to support a common data set. The value of
the entire information system goes up exponentially with the
addition of each new application. This is exactly what hap-
pened when, for example, gauges of wire or threads of screws
were standardized; and it is what is happening today with data
encoding technologies.

Thus, on the basis of requirements for interchange, and
standards to support it, the whole system of exchanges can
grow into an information ecology. Within such a system,
agents depend intimately on being able to know ahead of
time, at least to a great extent and with some degree of se-
curity, the nature of materials to be processed, how they are
to be dealt with and how successful the agents can expect to
be in processing them. Validation allows this.

This is the compelling and overarching benefit to vali-
dation, and it has been provided as a rationale for the de-
ployment of D'I'Ds (document models) in markup systems

Extreme Markup Languages 2001

201

Wendell Piez

since their inception.'’ But it is not the only conceivable way
of applying, or reason to apply, validation techniques to en-
coded data.

Validation as discovery: loose validation

The usefulness of a validation regimen in framing a clearly-
defined workflow makes an extremely compelling case for it.
But a gauge that can be used to judge a piece of work as pass
or fail, can often be used as easily as a measuring device. The
same techniques (parsing or querying an instance, comparing
the instance to a model) can be used in a more flexible kind
of application. Preceding the operation of judging, is the
operation of observing. What can we see about this data?
Where does it fail to conform to a given pattern? Validation
is essentially analytic: data may or may not satisfy given con-
straints; but our exception-handling may be permissive. In
contrast to the use case described above, I call this kind of
validation “loose”. Note that it is the means of application
that is loose or strict, not the routine in itself (whether it be
comparing a document to a DTD, XML Schema validation
or what have you'!) —although typically, it may be expected
that the type of processing in a loose routine may be less
comprehensive, but possibly more narrowly focused, than a
strict routine, and so, accordingly, that some tools will be
better suited for the work than others. Such suitability stems
not from any fundamental differences in technology or meth-
ods, but rather from the relative adaptability of different tool
sets to the different requirements we seek to address with
them.

In other words, we are not using a validation mecha-
nism—a D'TD, a Schema, a specialized processor—as a sim-
ple gauge. It may be more like a caliper or a scale, a mea-
suring or reporting instrument.

It is possible to envision, in sophisticated systems, looser
routines combined with stricter tests. Validation routines may
even be connected in series or staged from looser to stricter.

10. See, for example, [SGML Handbook]. SGML DTDs provide much
more than a model against which an instance could be validated: by indi-
cating tag omissibility, SGML DTDs (along with their associated SGML
declarations) also give critical information about how lexical information in
an instance (or the lack thereof) is to be interpreted. This, however, can be
taken to be secondary, as such lexical optimizations are only possible given
a deterministic element structure. By disallowing tag minimization, XML
reduces the role of the DTD almost to its core, to provide a gauge or pattern
for testing the element structure of an instance against a set of external con-
straints.

11. In XML terms, “validation” is necessarily strict, and with respect to a
single given DTD (named in the DOCTYPE declaration). In XML terms,
“loose validation” is a contradiction in terms, and it might be better if one
were to speak of querying, structural pattern-matching, etc.

Likewise, just as in XML terms “valid” is itself a binary condition, it
may be useful to consider “strict” an absolute in this respect, so that one
would not say, for example, that one querying or type-checking regimen is
“stricter” than another. Rather, strict would by definition mean “either ac-
ceptable or not”; whereas loose would be any routine in which a question
may be raised whether the document should be rejected or “corrected”, or
some alternative course taken.

But in its purest form, we might expect “loose validation” to
be most useful in an altogether different setting.

In a paper delivered to the 1998 Markup Technologies
conference, David Birnbaum sketched out just such a sce-
nario [Birnbaum 1998]. Birnbaum describes an application
in which an historical edition of a dictionary is being encoded
in SGML, posing a dilemma for the encoder when the dic-
tionary violates its own structural conventions. Does the en-
coder intervene editorially, changing the text to fit the normal
model? This would be unacceptable for a project given to
representing the record, not changing it. Does he relax the
constraints of the DTD? Then he loses the capability of mod-
eling properly the majority of the dictionary entries, which
are structurally conventional. Does he model the exceptions
in a parallel structure? This is possibly a workable compro-
mise, but is less than ideal inasmuch as it is precisely that the
anomalous entries are structurally exceptional, that the en-
coder wishes to trace. “We are not conditioned to think of
syntactically invalid SGML as a natural or desirable state, or
as a practical or appropriate way of representing syntactically
contradictory source data”, remarks Birnbaum. He concludes
that markup-based systems could be far more amenable to
the special requirements of scholars working on legacy texts,
if they had some capability to handle structurally invalid
markup, at least in some kind of transitional mode."

How should we call this approach to markup? The pri-
mary goal of markup in such an application is apparently to
describe the data object. In the extreme case, the objectives
of future processing (or, more narrowly, of certain kinds of
future processing) might be postponed; at any rate, the pur-
pose of the markup is to identify and trace those features of
the text as object, that are interesting and important to the
encoder. We might like to call this kind of markup “descrip-
tive” —but since that term has already been appropriated for
an entire species of markup applications that do not take such
a radical position, | propose the terms mimetic and explor-
atory to distinguish it."?

Now, it should be admitted that in its pure form, explor-

12. Bimbaum also explores the issue in an earlier paper, arriving eventually
at a moderate position: “I do not advocate, of course, that we prepare and
publish invalid SGML, or that SGML processing software be enhanced to
react affirmatively not only to valid SGML events, but also to SGML errors.
But I would suggest that when we perform document analysis on existing
texts, we recognize that some oddities may at least logically (although per-
haps not practically) be represented not as document structure, but as vio-
lations of document structure.”. See [Birnbaum 1997]

13. “Mimetic” in that it aims to “imitate” its source, and “exploratory” in
that its design is adaptable. The term “exploratory” was suggested to me by
Geoffrey Rockwell, of McMaster University, who attributes it to John Bradley
(of King’s College, London): “One of the things that struck me about CO-
COA and XML is that in certain situations you don’t know what the final
hierarchy will be. In the early stages of markup of something for study ... you
need something flexible and simple like the COCOA tags. At the end you
should know enough to reencode descriptively. . . . I think John Bradley has
called it exploratory coding. The problem with COCOA is that it doesn’t let
you make the transition from exploratory to descriptive easily. Ideally one
wants something where you can, once you are sure something is fixed, re-

202

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

Figure 2 Brown and Sharpe 599-100 0-1.2" Digital Micrometer

Available from Tyler Tool: see http://store.yahoo.com/tylertool/browandshar5.html. This model is available with an RS-232 port.

atory descriptive tagging would be somewhat paradoxical,
since the effort is clearly given to tracing textual features pre-
cisely so that patterns, as well as anomalies, can be recognized
and exploited —in principle, recognized and exploited by au-
tomated processors (or we would be using a pencil to do the
work). It’s precisely because retrospective tagging is, in some
potential sense, always prospective tagging, that it is attractive
to students of texts. Still, the idea of approaching a text and
doing a direct, ground-up development of a set of markup
conventions, without any great concern either for processing
or for standards, has its appeal.!*

So, for example, it is not difficult to imagine how a
scholar might go about creating a marked-up version of a
literary anthology—only to change the markup and adapt it
frequently, so frequently that it becomes impractical to track
innovations in markup with a formal model. Different poems
would have different features marked up. There might be
stylesheets and processors that work on the material, but no
explicit model that constrains the entire thing. The markup
would be more in the way of a running commentary and

place it with a robust scheme.” [Rockwell 2001]. The encoding syntax CO-
COA is a very flexible, non-hierarchical (stream-based), event- or milestone-
driven markup scheme, interpretable by several early open-format text
analysis packages.

14. Nor is there any reason why this couldn’t be done with XML ... such a
project would reverse the usual order (design and DTD development first,
then mark up the texts), and concentrate on transcribing an analysis of text
in the process of analyzing it, then working over the markup to recognize
patterns and locate points of interest. Any models would only emerge later.
Having introduced the notion of well-formedness, XML should be very well
suited for this.

apparatus, than it would be a single system bound to pro-
cessing in a particular way.

It might well be that such a system would evolve into
something more formally controlled. But the priority of in-
stance and model, in this approach, would be reversed from
what we are used to: the text to be marked up would be
primary, the model merely a secondary and ex post facto ex-
pression of what the markup “discovered” about the text. Fun-
damental design issues are (a) defining a tagging strategy, then
(b) defining an ontology (a theory about the text) to which
instances should conform.

In contrast to more familiar kinds of markup, it is worth
noting two particular aspects of exploratory, mimetic tagging.
First, in this kind of work, the tagging comes first, the mod-
eling later—if there is a model at all, it is subordinate to the
tagging in the instance: it merely describes it, never dictates
to it, and is not deployed as a way of introducing constraints,
except provisionally. Second, in this type of tagging, there is
no question as to what the markup describes (instance or
model): it is always the instance. The model does not exist a
priori, but rather only as a (second-order) description.

It may also be interesting to note that such a strategy
seems to have been part of the original intention, at least
among some of its developers, for TEI tagging:

A balance must be struck between the convenience of
following simple rules and the complexity of handling
real texts. This is particularly the case when the rules
being defined relate to texts which already exist: the
designer may have only the haziest of notions as to
an ancient text’s original purpose or meaning and
hence find it very difficult to specify consistent rules

Extreme Markup Languages 2001

203

Wendell Piez

about its structure. On the other hand, where a new
text is being prepared to an exact specification, for
example for entry into a textual database of some
kind, the more precisely stated the rules, the better
they can be enforced. Even in the case where an ex-
isting text is being marked up, it may be beneficial to
define a restrictive set of rules relating to one partic-
ular view or hypothesis about the text—if only as a
means of testing the usefulness of that view or hy-
pothesis.

[Gentle Introduction]

Note that in this view, validation is a means not only of
testing a text, but also of testing the model that (provisionally)
purports to describe that text.

After everything, exploratory markup will be difficult to
justify for most applications, especially over the long term.
Since it does not rely on or stress methods of strict validation,
it does not share in the virtues of scalability. Likewise, it is
difficult to envision how it could be conducted except by
practitioners who are expert both in markup technologies,
and in the specialized subject matter they are treating. As an
instrument of analysis and representation of a literary text,
however, this kind of technology would have great potential.’®
And it is not only the literary scholar who might be interested
in this avenue of approach, using document markup in a new
way. It could prove to be a useful methodology in psychology,
sociology, economics—any study with a complex and mani-
fold legacy data set—and a source of hitherto-unthought-of
ontologies and modeling techniques.

MAPPING THE TERRITORY

Apparently there are two kinds of descriptive markup: the
classical form (what I will identify as “generic” markup)
which works descriptively but which is aimed at future pro-
cessing, and what may be called an “exploratory” approach
to markup. In practice, the difference between these is pri-
marily that exploratory markup will not rely especially on
strict validation, in particular when the requirements of a
strict validation regimen may interfere with the markup de-
signer’s capabilities to introduce new terms to refine or extend
an accounting, treatment or handling of the text. A more
conventional generic language, however, validates strictly,
thereby allowing more-or-less dependable bindings to down-
stream processing. As we turn back to the classic “descriptive
vs. procedural” dichotomy, it may be helpful to keep this
possibility in mind.

15. A fine example of a project of this kind is Willard McCarty’s Analytic
Onomasticon to Ovid's Metamorphoses [McCarty 1999]. The design of the
(non-XML) markup is unique and especially suited to the indexing and
tracing of interconnections that McCarty has developed for this poem. In
the end, the markup will validates to its own kind of model (its own set of
gauges). But this is a case where exploratory markup has grown directly into
something more “procedural” (or at least application-bound).

Descriptive markup and validation

Whatever the explanation, it is evident that “descriptive lan-
guages” work (meaning, this time, generic languages but not
their exploratory cousins). It is possible, and at times highly
practical, to have a formally-defined document type that pro-
vides considerable advantages for processing—because it ad-
mits of strict validation —and yet, that works by describing an
abstract model rather than by committing a data set to one
or another kind of processing format. In other words, al-
though there is an inherent stress between, on the one hand,
requirements for, or intentions or biases towards the kind of
consistency enforced by strict validation (a consistency that
lends a data set to future processing), and on the other, to the
backwards-looking interests and tendencies of text descrip-
tion—although these purposes are sometimes at odds, none-
theless they are not so mutually incompatible that a workable
compromise, taking advantage of the capabilities of either, is
not possible between them.'®

What we are discerning, in effect, is that generic markup
languages occupy a middle ground between being bound to
a certain kind of processing (the “procedural” side), and very
loose languages (maybe they are merely markup conventions
or practices), that have great freedom to trace their subjects,
but that may be hard to deploy or scale up in production—
the truly “exploratory” descriptive languages.

In this diagram the exact placement of one or another
language might be disputed. At this point, the placement re-
ally matters only along the horizontal axis. (Languages are
also distributed vertically, both for legibility and in anticipa-
tion of my argument to come.) On the left is a fictional lan-
guage, “Prof ML, which (we can stipulate) is a set of markup
conventions that could be used in an exploratory way. Pro-
cedural languages such as XSLFO and SVG are far to the
right, indicating not only that their binding to processing is
strong (they are expected to be processed one way at least, if
not others!'”), but also that if we wish to validate them apart
from processing, D'T'D or even XML Schema validation may
not, by themselves, be sutficient. (Both these languages have
notions of “data types”, in effect, that are stipulated over and
above the constraints on element structure. Whenever an at-
tribute value is expected to resolve, for example, as CSS,
XPath or SVG path syntax—all of these amounting to distinct
syntaxes apart from the grammar of the document as XML
instance—we will need more than a DTD to validate.)

16. Again, I do not think this is accidental. Ever since Gutenberg, the
automatability of print has been regarded as one of its most important fea-
tures. Print applications in particular—everything from newspapers to aca-
demic journals to catalogs of every kind—have always been at the forefront
of automated production systems precisely because the codex has been a
successful technology, answering to people’s wishes for granular access to
information. So quite a bit of groundwork for markup-based systems, had
already been laid by the evolution of print media.

17. A procedural language could in fact target more than one application.
XSLFO, in fact, verges on this by targeting on-screen display, print, and audio
output.

204

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

“loose” 4 » “strict”

“Prof ML"I

... validation ...

| W3 Rec

Extreme
ot
. TEI I fﬂﬂﬂ"l
“descriptive” <« » “procedL

... description ..

Figure 3 Markup Languages mapped with respect to validation and description
Strict validation is only possible with a specified set of constraints, so it is at odds with any application of markup that must describe the data with “higher fidelity” than
those constraints allow. Yet an in-between zone exists, where formal models provide for strict validation, but are “descriptive” (and so, application-neutral) enough to support

a range of different kinds of processing.

This diagram also dramatizes how, when strict validation
regimens are introduced, there is also necessarily a shift in
emphasis for design. On the left side, models are probably
informal and implicit in the documents (since if we are not
validating, any model must be provisional); whereas as we
move to the right, models will become formal and explicit
(in the form, say, of a DTD or XML Schema); so a generic
descriptive language that validates, ends up describing not the
text “as in itself it really is”, but a theory about, a model of,
the text.!® To set out to describe “the text itself” runs the risk,
at least, that in the long term validation will fail on us, as the
model fails to “flex” to the ever-open possibilities for new
description.

There will always be a tension, in some ways irreconcil-
able, between the impulse to fit and form a text, or a markup
language, to the peculiar circumstances and opportunities of
the moment, and the attraction, and profit, of submitting our-
selves to a regimen good for all time. That is partly what we
are determining when we try to tune, as it were, the level of
abstraction or the “domain” (to use Allen Renear’s term) of a
markup language: we are determining to what degree and in
what respects it will be flexible, in what respects specific. But

18. The Greek word at the root of “theory” has a sense of seeing, beholding,
with an implication that there is some object there to be seen. Once we have
a DTD, we actually have such an object. Of course, it can be argued whether
a reader or interpreter ever encodes anything but a theory of a text; never-
theless, it should be evident how the necessity of modeling in a certain way,
would influence the direction of what (and how) the text is theorized to be.

regardless of whether the underlying rationale is a fiction or
not (the notion that there is one regimen of tagging that is
good for all time—for some more narrowly scoped tasks, it
may not be a fiction at all), there is a kind of genius in exactly
that rough level of validation achieved by SGML DTDs (of
which the XML DTD is, for these purposes, a more refined
form). Enough structure is there to support workflow-based
go/mo-go tests; yet the models are semantically opaque
enough' to work generically. This allows SGML- or XML-
based systems to occupy a middle zone, validating up to a
useful point, but also having enough flexibility to work, albeit
fairly roughly (only one hierarchy, etc.), “descriptively” —at
least when the tag set is well designed. That it is not truly
exploratory is something that has occasionally been pointed
out as one of SGML’s weaknesses.?” But any number of suc-
cessful medium- and large-scale systems are demonstration
enough that a middle ground is possible—and a rewarding
place to build.

19. Robin Cover ([Cover 1998] and [Cover 2001])assesses SGML DTDs
as lacking in semantic transparency, therefore inadequate for many modeling
functions. But (as I will argue further below) the DTD’s semantic opacity in
this sense, is actually of benefit for certain kinds of systems.

20. See, for example, lan Lanchashire’s comments in [Lancashire 1995]. At
that (relatively early) time, Lancashire’s critiques addressed perceived short-
comings in both SGML and TEI, without always being clear which is which.
But many or most of his arguments would have been neutralized if TEI
tagging could be something closer to exploratory (which it could not have
been, of course, while still being SGML).

Extreme Markup Languages 2001

205

Wendell Piez

Adding another dimension

When Allen Renear examined these questions at last year’s
Extreme 2000 conference [Renear 2000], he came up with
an analysis of the problem with several points of contact with
mine. The gist of Renear’s argument can also be presented
as a diagram.

Note that Renear was not concerned to examine the role
of validation in these systems, so his horizontal axis maps only
roughly to mine, distinguishing only between different “do-
mains” which a markup language might address. But I think
it is not unfair to relate a discrimination between logical and
renditional domains, to a distinction between the kinds of
constraints each domain may be expected to introduce, and
the conditions of their introduction—even apart from the se-
mantics those constraints imply. Whereas a renditional do-
main must, in the end, “validate” in its application (either
the stuff formats properly, or it does not)—and whereas it is
likely that in order to do so, some markup semantics may
need to be observed that are outside the scope of D'T'D-based
structural validation (so thata D'TD-based validation regimen
would need to be supplemented to be complete) —the “log-
ical” domain, on the other hand (especially as it concerns
what Renear describes as “content objects”) might well be
defined in such a way that a D'TD is sufficient to describe
it

What my analysis adds is the suggestion that to bind a

21. Recollecting Robin Cover’s argument about the semantic capabilities
(or rather, the lack thereof) of SGML/XML (|Cover 1998]; see also [Cover
2001], it may be that we have here a case of the tail wagging the dog: if the

tag set to a particular kind of processing (whether it be in the
“renditional” domain or not) implies both strict validation,
and a range of other considerations and constraints such as
data typing or referential integrity between elements (which
may require more fully-featured validation mechanisms than
DTDs alone); whereas to work in the “logical” domain puts
us in a relatively free in-between zone, where validation pro-
vides us the benefits of predictability, control, and a model-
centered design, but where the semantics of the markup itself
does not rise to the level of specifying behaviors (without the
kinds of mapping or augmentation that are provided by style-
sheets) —thereby leaving it to be “clean”, “logical” and “ge-
neric”.

But Renear’s strongest contribution is in adding a di-
mension we have not really attended to. By discriminating
on a second axis (I have made it vertical) between “indicative”
and “imperative” (or “performative”), Renear isolates a very
useful axis that had gone pretty much unnoticed. (I believe
that his basic proposition, that the descriptive/procedural dis-
tinction has served to mask this dimension, to be essentially
correct.) In my diagram, we might notice, for example, that
notwithstanding the apparent advantages of generic markup,
it is still evident that there is a clear difference even between
(say) the W3C Rec document type (the DTD by which W3C

semantic expressiveness of DTDs were richer, the “logical” domain could
be accordingly more fully-featured. Models would be more directly tied to
processing semantics—and we would not have had the same chance to learn
the capabilities and occasional advantages of the looser coupling between
model and application that the logical domain implies.

imperative

indicative

Figure 4 Renear's Map

logical

& “he-a-title”
{"performative™?)

“descriptive”™ of
content objects
& Mig-a-title”

B o
O randitional

“procedural™
e “be-rendered-
in-bold™

(777
2.g “is-rendared-
in-bold™

iptive/Procedusal Distinetion is Flawed” (Extreme Markup Languages 20000

Allen Renear's speech-act linguistic analysis of markup languages. See [Renear 2000].

206

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

drafts and recommendations are marked up), and (say) TEI
markup. In a sense both may be considered to be descriptive:
but it still seems significant that one presumes to describe
something that already exists (TEI documents usually purport
to be faithful representations of texts already extant in print
or manuscript), whereas another (W3C Rec) describes some-
thing that never exists apart from its tagging (or in products
derivative of that tagging), to be created and then maintained
in that form.

While Renear himself is not altogether satisfied with the
categories he proposes,? it is evident that either or both “im-
perative” and “performative” can provide the necessary dis-
tinction from the opposite term, “indicative”.

To reduce this to its essence, it appears markup can look
“into the text”, or “out to the application” (this would seem
to be a very loose way of characterizing our old friend, the
descriptive/procedural distinction); but it can also look for-
ward in time, to eventual processing, or it can serve, irre-
spective of application, to represent some state that pre-exists,
for example in a document already extant. While it might be
tempting to call the latter kind of markup “descriptive”, this
requirement is in fact orthogonal to the requirement for ap-
plication binding we have been examining so far. Renear’s
major contribution, by identifying a kind of markup in the
logical domain, but imperative or performative mood, is to
show that descriptive markup (in the traditional sense of the
term) can in fact look either back, or forward. In fact, many
or most of the current initiatives in XML languages are of
exactly this forward-looking type. The markup serves descrip-
tively, but only to describe the text’s content with respect to
a logical model, designed to be amenable to some particular
kind (or some range) of processing. This is quite a different
thing from using markup to describe some extant artifact in
the world. A confusion over the stresses between the two views
may be at the heart of many design problems and infelicities.

We can adopt this point of view in developing our map
of markup languages: one way to name this new axis is be-
tween “prospective” and “retrospective” markup languages. A
retrospective markup language is one that secks to represent
something already existing; whereas a prospective markup
language is one that seeks to identify a document’s constituent
parts as a preliminary to further processing. Prospective
markup, that is, may be “procedural” in the sense that SVG
or XSLFO is. Alternatively, it may seek to claim all the ad-
vantages of generic markup (scalability, strict validation, con-

22. Although imperative and performative moods are supposed to be dis-
tinct in the scheme Renear proposes, in his treatment he is not quite able
to clarify why the mood of a “renditional imperative” and a “logical perfor-
mative” (a bit of markup that makes something a title, say, by so labeling it)
should be considered to be different. I submit that the difference is one of
agency. An imperative is spoken by one agent, to be performed by another,
whereas a performative is something that is done in the speaking of it. But,
when applied to markup languages, this in turn raises other questions: is
such agency a property of the language itself, or is it determined by the design
of the architecture in which it functions? In linguistic terms, the “pragmatics”
of the situation are entirely different.

tent re-use etc. etc.) without having to be bound to describe
anything apart from itself.

In my map (Figure 3), this could be distinguished by a
vertical axis, “prospective” corresponding to Renear’s imper-
ative/performative mood, “retrospective” corresponding to
Renear’s indicative; but it is interesting to see that when we
begin to place actual markup languages into this conceptual
space, that there are blank spots. In particular, there are two
positions left empty in a possible grid of six (we can conceive
of Renear’s arrangement with a new domain to the left, “ex-
ploratory/mimetic”, next to logical and renditional to the
right). For one, it seems unlikely that we would have an ap-
plication of markup that is both prospective (Renear’s imper-
ative), but exploratory, having no use for validation or the
kind of binding to (even implicit) semantics that validation
implies: if we are creating a new format for a new application,
what does validation lose us? It could be that markup in-
stances that are purely ad hoc files for momentary processing,
would fall into this category.?

Equally unlikely would be a conjunction between ret-
rospective and procedural (or application-specific). This
would correspond to Renear’s category of “indicative rendi-
tional”, which he also remarks would seem to make little
sense. Evidently, procedural and retrospective markup serve
requirements that are in conflict. We can either describe the
world as we find it (with retrospective markup) or we can
dictate in what way we need our data to be handled (with
procedural markup). The fact that traditionally, generic
markup systems (or at any rate, those that had retrospective
designs) have sought to mediate this exact conflict, does not
make it any easier to do so. The more we need our application
to serve retrospectively, the less we can expect to find thor-
ough, detailed and strict validation regimens of much help.?*

That is, although we can distinguish a vertical axis that
indicates a markup application’s orientation in time (forward-
or backward-looking), it is clear that this axis is not completely
orthogonal to the spectrum of loose-to-strict validation that
began by tracing. It is likely that a prospective application will
find strict validation both useful, and not particularly burden-
some. 'To the extent that an application is retrospective (such
as might be the case with a markup language written to sup-
port conversion of a legacy data set, or a scholarly project in
textual editing), however, it may prefer any testing to be loose.
In graphing it out, therefore, this axis appears on a diagonal.

23. T actually think there is an important role to be played by such little

languages, exploring not artifacts or texts, so much as processing opportu-
nities.

24. Nevertheless, applications like this are conceivable, and have even been
executed in part. For example, if an attribute syntax were to be adopted on
top of a generic markup like TEL especially if the attributes worked to pre-
scribe formatting (embedding, as it were, a style mapping into the generic
instance), it might achieve something like this.

Extreme Markup Languages 2001

207

Wendell Piez

GENERIC MARKUP AS A FORM OF RHETORIC

Prospective, procedural languages clearly have a place: it
would be hard to argue against the utility of standard XML
vocabularies such as XSLFO and SVG.%* At the other ex-
treme, retrospective, exploratory applications of markup
would appear to be very fruitful as approaches to certain in-
tellectual problems (although until it became practical to de-
velop markup applications without D'T'Ds, this kind of appli-
cation of technology was severely hampered by a lack of a
standard toolset), particularly problems that have directly to
do with questions of how we represent non-digital phenom-
ena by digital, processable means. But what is most interest-
ing here is the broad grey zone between these extremes, a
zone occupied by applications of markup that have a need
for strict validation as an instrument in workflow and pro-
cessing architectures, but that are not exclusively bound to
any particular type of processing or application, as would be
implied by a procedural language. This is the zone of “ge-
neric”, loosely called “descriptive” languages such as TEI,
W3C Rec ML, or for that matter, the language used to mark
up this paper.

Most discussions of “semantic” in the context of auto-
mated text (or “knowledge”) processing end up having to dis-
tinguish between two meanings. There is the realm of human

25. In fact, as for example in the “XSL Formatting Objects Considered
Harmful” argument [Lie 1999], when these languages come in for criticism
it is precisely because they have certain kinds of utility (though perhaps not
others).

“loose” .. validation ...
$ELT Schematron
Praleptic
W3 Rec
Exploratory Extreme
Mimetic -
. DocBook |
ProfML I
T . COnversion I
TEI I formats
Retrospective
“Indicative”, "receptive” Metaleptic

Figure 5 Markup languages mapped on two axes

semantics, largely if not principally representative, our “mean-
ings” when we express ourselves in language or by any other
means. Then there are machine semantics, the sorts of be-
havior, events, products or controlled processes that can be
expressed through a machine—and which are the normal
objective of workflow-oriented systems. If you like, you can
consider this a spectrum between word (on the “human” side)
and act (the machine behavior). (Tim Berners-Lee, for ex-
ample, in his discussion of the “semantic web”, has openly
affirmed that he is concerned only with the second kind.)
The world of “content” (text) that is encoded generically
is a fascinating one, in which these two competing notions
of the semantic discover themselves head-to-head. In this
world, markup simultaneously links people and processes in
different roles, and serves as a conduit or channel for “mean-
ings” that have the interesting property of skipping or passing
through stages in a process (a “supply chain”) that can go
directly from creator and producer, to audience or consumer.
That is, markup provides a kind of framework or packaging
by which words (written texts or representative codes) can be
passed without consideration of what they “say”. As a kind of
interchangeable part, as long as the package or framework is
correct, the meaning or substance of the “text itself” (what
we call the “content”) can be more or less completely opaque
to participants along the chain. The framing or wrapping pro-
vides the text with sufficient information (about its nature,
about how to handle it) that it can be passed and processed
without constant rediscovery and reinvention. This wrapping
or packaging takes the form of markup; and of course, relative

The horizontal axis represents the level of validation appropriate or called for, and thus the specificity of machine (behavioral) semantics. Requirements for a tag set to
be prospective (provide for future use) or retrospective (describe a given artifact physically or “logically”) align along the diagonal lower-left to upper-right.

208

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

to the processes, the markup is meaningful. (Exactly which
specification it is, that a particular interchangeable compo-
nent conforms to, is something we need to know.) These are
staged systems in which interpretation happens in an articu-
lated way. For example, authors decide some things, bibli-
ographers some things, catalogers some things, layout design-
ers others. In such a system, a degree of “semantic opacity”
is a feature (cf. [Cover 1998]), allowing us to provide appro-
priate processing based on some kind of “intention” as a tag
set presents that, but always leaving it up to us to decide finally
what that means. Note that exactly insofar as machine se-
mantics is devalued (or rather, postponed or layered) in such
a system, the expression of human semantics becomes very
important: generic markup languages become worse than
useless if their tag names are cryptic or if they are not well
documented. But when a markup language is designed well,
it can be used to frame and drive a process in which different
participants can provide their added value, each without hav-
ing to get involved in exchanges of no direct concern to him-
or herself.

In these respects, a generic language is able to be, or to
pretend to be, exactly, descriptive or representational —mean-
ing that, pragmatically, it has some kind of implied human
semantics, without being bound to any, or any particular,
processing (machine) semantics. That is, we take the tags to
“mean” something—but what they actually mean, in the
event a file is ever processed, may be different from (albeit in
some way implied by) the meanings of the tags. In other
words, there is a slippage between what a descriptive tag set
purports to mean, and what it actually “means” (does) in the
event.?® This slippage is the source of the power of descriptive
languages, their famous “indirection”: meaning nothing di-
rectly, they can be taken to mean a great range of things if
we only bind their evident and ostensible meanings (that in
practice do nothing but structure and disambiguate between
types) to behaviors. To tag a data element as a title, say, may
mean nothing more than “whatever you do with titles, do it
with this thing”.

So generic markup involves us in a strange paradox. It
foregoes the capability of controlling behavioral “machine”
semantics directly, but wins, in return, a greater pliability and
adaptability in its applications for human expression. This
kind of middle-ground markup would be systematic enough
to be receptive to automation, but would not necessarily be
automated “out of the box”. Another way of describing this

26. Robin Cover argues [Cover 1998] that this makes it important to provide
XML with a means of strong semantic specification, which in and of itself
it does not have (since XML syntax, nor DTD-based content modeling, are
incapable of providing it). In Cover’s terms, this is XML's lack of “semantic
transparency”. And for procedural applications of the syntax, this is certainly
a critical issue. It can be addressed in several different ways, for example by
providing some kind of formal ontology; by merely presenting a notation for
some other data model; or by passing the problem into a syntax carried in
attributes, such as CSS, XPath or SVG path syntax. Yet for descriptive or
generic applications, XML'’s semantic opacity is actually be a feature of the
technology. It's where things can get slippery between layers.

kind of markup application, as opposed to more strongly
typed and validated kinds, is that this is the kind of system in
which a stylesheet writer has something significant and im-
portant to do. Stylesheets are a natural way to get from an
abstract model, into an application. But they might require,
as stylesheet writers know, some addition of information, in-
terpretation and restructuring, as well as mere mapping.
Stylesheets are also where a great deal of creative work can
come into play.

If this variety of markup language is not really a set of
instructions, but a complex representation (on which a later
process may be expected to act), the proper discipline for
regarding it would seem therefore to be, not formal languages
(that have the virtue of being readily bound to processing),
but something closer to linguistics and rhetoric.?” This is the
realm where we experience slippages—whether inadvertent,
or “intentional” —between actual and potential meanings.?

In effect, markup languages are far more than languages
for automated processing: they are a complex type of rhetoric
working in several directions at once, often in hidden ways.
Inasmuch as markup systems then may begin to resemble
other textual systems (such as literary canons or conventional
genres), it is reasonable to turn to rhetorical or literary critical
theory for explanations, or at least higher-level characteriza-
tions of them. I am not going to begin to plumb the depths
of this subject here. Given both the complexities of real-world
workflows, and the fact that many of the agents are human
beings only as mediated through their machine proxies, it is
difficult to say who is saying what to whom through (and in)
a markup language or markup language application. Then
too, the ways in which messages and meanings trace through
an electronic text system, is going to be highly, sensitively
dependent on the unique particulars of media, technology
and culture at work in a particular case. One thing that does
need to be observed here, however, is that in markup, we
have not just a linguistic universe (or set of interlocking lin-
guistic universes) but also a kind of “rhetoric about rhetoric”.

27. Lately, Michael Sperberg-McQueen, Claus Huitfeld and Allen Renear
have sought to formalize markup languages’ (including generic markup lan-
guages’) handling of meaning by saying markup “licenses certain inferences”
about a text. (See [Sperberg-McQueen 2000].) In the notion of inference —
and the evasion of the issue of how an inference can be constrained or
defined (since isn’t an inference precisely that kind of communication that
can’t be constrained or defined?)—they effectively elide this transition be-
tween formal information theory, and rhetoric (which is enamored of for-
malisms, but resists being comprehended by them). To “license an infer-
ence” is, in effect, to say something without saying it. Is this logic, or rhetoric?
28. To examine this in the context of Renear’s categories: one difference
between imperative and indicative, or between a “performative” and an in-
dicative (the axis Renear describes as “mood: whether markup describes
something, or requests processing” [Renear 2000]), is that an indicative
refers back to the past (or disinterestedly to the present or future). It is the
projection or implication of some reality apart from the markup (the sepa-
ration of format from content!), whether this is a feature of some kind as
documented, a perception, or an imaginative projection, which competes
with processing objectives, that opens up the important area of slippage.

Extreme Markup Languages 2001

209

Wendell Piez

That is, markup languages don’t simply describe “the
world” —they describe other texts (that describe the world).

As it happens, critical theory has had occasion to consider
such complex types of figuration, representation or meaning.
[am going to draw on the work of scholars who have studied
intertextual referentiality?® (where this type of phenomenon
is especially pronounced), to distinguish between the tropes
metalepsis and prolepsis. These are distinguished from the
usual run of rhetorical figures such as metaphor, metonymy
and so forth, because unlike others (which are occasions of
figurative representation), these are tropes about tropes. It is
not “something in the world” that is represented in a meta-
lepsis (or its less common complement, prolepsis), but rather
some other act of figuration.®

Proleptic markup

Of prolepsis and metalepsis, the first is possibly simpler to
grasp quickly: Prolepsis is a rhetorical trope or gesture’ in
which an expression or figure of speech takes its meaning
from something that is to appear later. Dramatic irony (where
a character in a play, for example, says something that carries
an extra meaning to an audience that knows or guesses what
is to happen in the drama), or literary or dramatic foreshad-
owing, is prolepsis; but so is any “casting forward” or antici-
pation, such as an argument one might make in a conference
paper in anticipation of counter-arguments. Consequently,
the full meaning of a prolepsis is impossible to know without
taking account of its relation to the future. Whether what is
forecast does, in fact, come to pass in the way forecast, opens
prolepsis up to capabilities for irony. On the other hand,
sometimes saying something, makes it so: so prolepsis often
has the capacity for a kind of poctic fiat.

We could generally call any prospective tagging “prolep-
tic” because the meaning of the tagging is intimately con-
nected with our expectations for processing it. Even when

29. In particular, on the work of the poet and literary scholar John Hol-
lander [Hollander 1981] and his colleague, the critic Harold Bloom [Bloom
1982].

30. Hollander (and with him, Bloom) claims that this type of thinking is to
engage not just in the usual kind of “synchronic”, buta “diachronic” rhetoric.
That is, ordinary treatments of rhetoric pay attention to the use of figurative
language as if all the signifiers were related outside of time. (This would
seem to be a Platonistic view of text, with all meanings always available sub
specie aeternitatis.) But it is possible, not only to consider how language or
signification interacts as a kind of “random access” system, but also to think
of how meanings work over time and across it, how they shift and change in
relation directly to one another, how they recapitulate or anticipate. This
kind of thinking is extremely helpful as soon as we start looking at layered
systems and complex, dynamic information interchange —but it involves us,
in effect, in representing the flow of information, the stages of its passage.
31. The extremely useful word “trope” may call for some explanation. From
the Greek for “turn”, it is a traditional word to designate a figure or speech
or signification (whether spoken, written, or by some other means), or any
occasion when something is expressed by saying something somewhat dif-
ferent. Metaphor is a trope, though its cousin simile (a comparison using
“like” or “as”), even when poetical, is only a trope in a loose sense. Other
tropes include metonymy, synecdoche, irony, ete. etc.

such markup is generic, we call something a head or a sec-
tion because we intend to treat it as a head or a section in
processing. This is Renear’s “performative” markup: the sec-
tion becomes a section through an original act of naming.

But it might also be that the term proleptic would be
useful to distinguish exactly that type of prospective (perfor-
mative) markup that works generically, such as DocBook, the
W3C “XML Rec” markup, or even certain kinds of XHTML
(probably “XHTML Strict”), as opposed to prospective
markup that is merely, in effect, an application binding, such
as SVG or certain other kinds of XHTML (such asa DHTML
application, heavily laden with script and tuned to a partic-
ular browser). Admittedly, this may be a spectrum rather than
a simple either/or classification; also, it should be noticed how
a markup language may actually “grow into” an application
binding—or conversely, how an application binding or API
may grow around a markup language.’? Nevertheless, there
will be occasions when, although we have expectations for
processing our data, they may not be specific or limited ex-
pectations. In other words, we want a method (a generic lan-
guage) that affords us that slippage between specification and
processing. The word “proleptic” seems to allow for this: as a
trope, the meaning of a prolepsis has to be seen as condi-
tioned by the possibility, at least, that things don’t quite turn
out as expected. Especially when marking up new texts (or
composing texts in a new language), this is a very powerful
way to approach the design and practice of markup: an artful
combination of specification and slippage is what enables
most of the promises of generic markup to be realized. When
we design, we may want to know in detail (or at least in
principle) the application requirements of a markup lan-
guage; we may want to be prospective if not actually proce-
dural. Nonetheless, we always want to keep our eyes also on
the bigger picture, since a careful restraint devoted to mod-
eling our information “logically” (that is, in some sense, de-
scriptively, if only to be descriptive of an abstract model)
rather than in the language actually of an application, pays
off in the long run in data independence, reuse, longevity,
and so on.

In this kind of endeavor, validation routines are going to
be very useful. We will build our workflows around them.
More interestingly, possibly, our means of specifying valida-
tion, such as D'I'Ds, will be useful as specifications for tools,
many of which can be automatically fitted to the task. This
is an application of a gauge (the DTD), which is used to
check conformity to an external measure, as a jig—a device
or tool fitting, that allows us to make the component to mea-
sure the first time. In a sufficiently evolved production system,
we may never even have documents that are “invalid” in the
XML sense, and we may have needs and uses for all kinds of
validation besides simple structural element type checking.

32. So, for example, CSS has grown up as an API (in effect, albeit “declar-
ative”) around HTML, therefore pulling HTML/CSS further into the pro-
cedural than plain “generic” HTML on its own. As an API to a display
engine, of course, CSS is useful to more than HTML.

210

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

But we may do all of this without any particular or specific
expectations for processing.

Metaleptic markup

So proleptic markup is that type of generic markup that looks
forward. What of generic markup that looks at what is past?
That is, that tries seriously to register, in some disinterested
and objective way, features and organizations of information
already out there? In some ways it would seem unnecessary
to have to submit a descriptive markup convention to strict
validation, with all that implies (we remember Birnbaum’s
argument [Birnbaum 1998]). Nevertheless, whatever pro-
cessing we expect to do over data sets, on however large a
scale, will demand some kind of validation at some point,
and there are many reasons, both intellectual and practical
to try to design a generic language that also tries to capture
some “truth” (or at least theory) about the world. Having for-
malized our theories in abstract models, we can then test
them by running the very same validation routines that we
apply to encodings that have been specifically designed for
processing, not for representation. In the end, validation is
not only a testing instrument in a workflow: it is an investi-
gatory instrument in its own right. D'T'Ds are representations
of texts. So we look backward, in an interestingly formalistic
way. But we also get the benefits of looking forward.

This type of markup tries to be retrospective (and in this
presumes to describe the data set), but nevertheless relies on,
and benefits from, strong or “strict” validation regimens. Such
tag sets would include TEL?* or any tag set developed for data
conversion or retrospective document conversion which
secks at once to be both descriptive and generic. Markup
systems like this are evidently descriptive after a fashion; but
it is also clear that their prospective applications, be those
presentational, analytical or what have you, are a big part of
their conception.

In contrast to prolepsis, metalepsis is the rhetorical trope
in which the meaning of an expression is in direct reference
to what has already happened in the past.*® Of course, this is

33. Practical reasons: converting large amounts of data from a legacy format.
A well-designed model that looks to how that data is formatted, can preserve
information through conversion to an open format like XML, and ease the
conversion process. Intellectual reasons: develop a theory about a (body of)
text; formalize that theory; process over it.

34, In most applications. TEI can also be used in a proleptic way, for
example when it is used to drive a web site of original documentary materials
(a task for which a TEI subset is actually fairly well suited). Notice that it is
not a markup language (a tag set) that is per se proleptic or metaleptic, but
an application of it. Some tag sets can be used in all kinds of ways: HTML
certainly has been.

35. John Hollander, considering metalepsis as a “diachronic figure”, de-
scribes it as related to allusion but entailing a deliberate relation between
before and after. “We deal with diachronic trope all the time, and yet we
have no name for it as a class. An echo of the kind we have been considering
may occur in a figure in a poem, and it may echo the language of a figure
in a previous one. But the echoing itself makes a figure, and the interpretive
or revisionary power which raises the echo even louder than the original
voice is that of a trope of diachrony” [Hollander 1981]. As a variety of allusion

in some sense true of all rhetoric (and inasmuch as this is the
case, all rhetoric is metaleptic, successful or failed); but in a
narrower way, metalepsis is what occurs when reference is
made to another figure that has already appeared (some event
of meaning or figuration that has already taken place), but in
such a way that the meaning of the earlier figure is itself
changed by the appearance of the metalepsis.*

What then would be a metaleptic markup language?
Keep in mind, to begin with, that document markup as rheto-
ric is necessarily complex; there are various levels of expres-
sion here. A tag set describes a data set, or it describes a theory
about the data set; when it looks back, what does it see? Might
it not sometimes have reference to one or more earlier sys-
tems of description (earlier theories?), including implicit tra-
ditions? A consideration of markup systems actually in use
(I've mentioned academic projects including TEIL as well as
transition or conversion formats being used in industry), sug-
gests that such a reference is not, in fact, uncommon.”” In
general, metaleptic tagging will act retrospectively, and may
even pretend, and attempt, to be thoroughly descriptive and
retrospective in its relation to already captured information
(figures already spoken); but it relies on strict validation. This
betrays its true nature: its design and application is really done
for purposes of future uses of the data (new meanings), not
merely to “describe” in the more limited senses of that term.
It is retrospective tagging for prospective purposes: thus, it

with “interpretive and revisionary power”, metalepsis is not any ordinary act
of signification or representation: it is a representation with reference to
another (previous) representation. Once he has alerted us to this possibility,
Hollander is able to show that gestures of transumption (the Latin “tran-
sumption”, with its morphological variant the verb “transume”, has long
been a variant of the technical Greek “metalepsis”) are in fact not uncom-
mon in literary language. “Save for dramatic irony, with its audience’s—or
reader’s—proleptic sense of an outcome of which the dramatic speaker is
unaware, and which engenders an interpretation more powerful than the raw
intended meaning of the speaker himself, only transumption seems to in-
volve a temporal sequence.” [Hollander 1981] His fascinating book The Fig-
ure of Echo contains a thorough examination of the dimensions and history
of this category in critical theory. Nor is this conception, concludes Hol-
lander, of application limited to poetic language. “Not only particularly
preexistent metaphors, but formal structures—and M.H. Abrams and, more
recently, Paul Fry, have shown us authoritatively the intricate turnings of the
transumption of a previously public form in the history of the ode—are
recreated metaleptically. So are genres” [Hollander 1981]. And so, I submit,
are markup languages.

36. The Christian New Testament is metaleptic with respect to the Old
Testament. Virgil is metaleptic with respect to Homer, Dante with respect
to Virgil. Strong poetry is almost inevitably metaleptic, since poets, it seems,
cannot help but echo and try again their predecessors, but in such a way
that they commandeer the older works and set them to later purposes. Blake
and Shelley succeeded at this so thoroughly with Milton, that we cannot
even read Milton any more (if we do at all) without meeting up, in some
way, with Shelley’s Romantic heresy. This also happens in musical traditions:
Brahms is metaleptic (or attempts to be) with respect to Beethoven, and so
forth.

37. Isuppose any extension of a standard or off-the-shelf markup language
might be metaleptic in a simple way. But more common, and more complex,
are cases where the references are merely implicit, if sometimes obvious.

Extreme Markup Languages 2001

AN

Wendell Piez

works by saying something about the past (or about the pre-
sumed past), but in order to create new meaning out of it.

Typically, it does this by positing a model of the text and
then asserting, implicitly or explicitly, that this model is suf-
ficient for all practical (if not conceivable) descriptions or
applications of the text. And in well-designed, mature systems
(by which I mean ones which have clarified the way they
actually work and are not confusing either their rationales or
their design with those of other markup applications), meta-
leptic languages do in fact function very nicely as generally-
accurate descriptions—though it should be added, that when
they succeed in this way, it is typically because they determine
not to try and describe everything.

Just like any other future-bound processing, this kind of
markup will be able to take advantage of strict, go/no-go val-
idation. Because this kind of tagging often originates as a de-
scription of a given (known) text, it is easy to identify it with
true descriptive markup. But as I've said, that is a very rare
thing (unheard of in commercial or industrial applications):
most of what goes by the name “descriptive” is in fact meta-
leptic.®® A metaleptic markup language (or rather its designers
and advocates, perhaps its users) may be entirely innocent of
any perceptions of stress between extant documents, and ab-
stract models—fundamentally, the stress over which many
struggles over validation will take place. Absent any con-
sciousness of such a stress, a metaleptic design may take, or
propose, its model or theory of the text as a kind of reality,
thus claiming the title “descriptive”. But we can know it for
what it is when we see it being validated strictly, and when
we also hear, in addition to its claim that it works by descrip-
tion, that it expects all the benefits downstream of validation,
in the data set’s readiness for further processing (be that pub-
lication of electronic or print editions, providing database ac-
cess, or what have you).

So far so good; the dark side of metalepsis is, possibly,
when it denies its own complex and layered nature. An act
of transumption (a synonym for “metalepsis”) changes, trans-
figures, that which it transumes (in this case, “describes”).*
To pretend otherwise, it would seem—to pretend, for exam-
ple, that our representations are in all respects (or even all
important respects) identical to what they represent—would

38. In fact, the process of formal document analysis as it is practiced in the
markup industry, can involve a complex interplay between an actual descrip-
tive exercise, as a way of driving work and exploring the problem domain,
while ultimately keeping focus on requirements for future processing (often
to the point that “description” only roughly describes what the entire process
is).

39. In a metaleptic markup language, there is a missing term standing
between the language itself, and the text, the presumed “content” that com-
pletes (and is completed by) the markup: that term is the theory of the text,
the model, that the language formalizes. (Here I am concurring with Paul
Caton, [Caton 2000].) It is the movement from one term to the next (here,
from text to theory, theory to model, model to application) that makes for
the rhetorical complexity of such a language, sometimes most complex when
it aspires to be most “transparent”—and that may help make applications of
these languages suitable for particularly interesting processing, as being par-
ticularly “slippery”.

only have the effect of setting ourselves up for disappoint-
ment. In the worst case, we may end up with neither an
adequate representation of our source text (however we de-
fine that), nor data that is well suited for automated process-
ing.

More commonly, rather than being purely descriptive/
exploratory, or purely proleptic, applications adopt a metalep-
tic design strategy because they need to meet requirements
on two sides, past and future. In time, if they are lucky, they
grow into a consciousness of their ambiguous status; but the
actual rationales, expectations, and design of these projects
are often complex and intermixed. Sometimes project partic-
ipants themselves have not exactly clarified what their main
interest is; often they are working with several conflicting ra-
tionales or requirements.

But in general, the emergence of this type of markup is
of great importance because it has led us more quickly and
readily to understand the efficiencies, power and scalability
of layered markup systems: just like proleptic markup (which
are generic without being retrospective), metaleptic tagging
is very much at home in such a system of at least two tiers,
possibly because it itself has two faces, looking in and looking
out.* And when they are well designed (which not coinci-
dentally, often means intentionally designed) and appropri-
ately deployed, such a markup language can be fascinating
in its own way, quite differently from either of the other two
forms of markup that are prevalent (leaving aside exploratory
markup as more rare than it should be, we also see generic
proleptic markup, and procedural applications). It has its own
kind of art. It does not try merely to transcribe, as purely
descriptive, exploratory tagging would (though as scholars
know, “merely transcribe” is an impossibility and an oxymo-
ron), nor merely to function in future systems, like prospec-
tive markup (spectacular though that might be). It aspires to
both, by secking to balance between them. An effective
markup language will work by establishing a self-contained,
internally consistent and clear set of categories perfectly suf-
ficient for handling the data set to which it will be applied,
within the range of applications for which it is due. But this
ideal is impossible for a truly descriptive language to achieve,
since the world is not a closed, finite set of phenomena that
is liable to such treatment.*! Metaleptic markup gives us the
next best thing: it invents its own imagined world, proposing
earnestly or ironically that this serves both sides, both ac-
counting for external reality as it is, and creating it as it needs
to be.

TEI incidentally, has occasionally been represented as

40. This is of course the famous separation of format from content. Two
tiers would be the repository and presentation layers (think of a TEI text and
its HI'ML rendition); this also maps over to the model/view/controller par-
adigm (with “descriptive” or “generic”instance as model, rendition version
(say, HTML) as view, and stylesheet or scripting engine as controller.

41. This observation has often been made informally, in a variety of ways.
“Selection is easier than synthesis, but the world is not finite”, says Brian

Reid [Reid 1998]

212

Extreme Markup Languages 2001

Beyond the “descriptive vs. procedural” distinction

a true retrospective tag set, yet is torn about the issue. It aspires
to provide certain functionalities along with transcription,
such as eased production costs for print or online editions, or
eased repurposing across different applications, that can only
be guaranteed through strict validation. Up until recently
(when XML has made processing without a D'TD more prac-
tical), validation has been a particularly all-or-nothing prop-
osition. New (and newly accessible) tools and approaches
supporting “ loose” validation may now seem more of an op-
tion than they have hitherto (especially to strapped academic
programs). Nonetheless, TEI cannot help but continue to be
powerfully metaleptic: pretending to be simple, naive, retro-
spective (and accordingly, extensible!), and simultaneously
stressing validation as a means of smoothing transitions of its
texts to new media and new applications—a prospective ges-
ture —it ends up “falling into” metalepsis despite itself.*?
Finally, it may be worth observing how architectures sup-
porting metaleptic languages or applications will differ from
those for proleptic languages. Of course, we will be able to
tell the difference when we look at a project’s regard for, and
use for, validation mechanisms. For a metaleptic system, val-
idation will need to be strict to the extent that future pro-
cessing is anticipated. On the other hand, since there is at
least a presumed interest in the prior or “original” nature of
the textual content’s own structures, features or organiza-
tions—however these are conceived—it may be at times that
the best solution to a misfit between document and formal
model is to change and adapt the model (and accordingly,
the system) rather than forcing the document. As in pure
exploratory applications, markup is designed first, formalized
after: whereas in a proleptic system, the model or schema will
come prior to the markup. This difference in emphasis may
make for different toolsets, to an extent. Also, we can expect
of metaleptic systems, in particular, that the natural stresses
between requirements for description (sometimes in the guise
of backwards-compatibility) and for interchange, will be at
their greatest: balance will only be achievable if we keep a
realistic view of what we intend to achieve and how we intend
to do it. But when metaleptic systems are well designed, the
rewards, both in our mastery of complex bodies of informa-
tion, and in our understanding of them, will be great as well.

CONCLUSIONS

* “Descriptive” may not be the best word. It means too
many things. Even the procedural languages are descrip-

42. 'This tension can be seen to play out exactly in the role validation is
expected to play in TEI projects. On the one hand, the tag set is provided
with an apparatus to support extensibility. This is the promise of descriptive
markup: that no text should have to be forced to fit. On the other, validation
is considered indispensable, not only for usual quality-assurance reasons, but
also because in it there is an assurance (for example) that the rigors of the
teiHeader are observed, or that off-the-shelf (or nearly off-the-shelf) style-
sheets be able to be used—or that interchangeability be achieved (a pro-
spective requirement, perturbed by local extensions). It is, after all, the Text
Encoding Initiative for Information Interchange.

tive: they describe a binding, API, or object model. The
differences are in the closeness of the binding and the
extent to which an abstract syntax allows us to validate
without binding, hence letting us design a language at a
higher level of abstraction (and get capabilities of reuse
and refitting thereby). Generic is a somewhat more use-
ful term: these are languages that can be strictly vali-
dated, but that are only loosely bound to processing. At
the far end, markup that isn’t validated at all, if it is ret-
rospective, may be said to be descriptive, insofar as it
describes some external object (and is therefore directly
representational). But historically, no standards have ex-
isted to support markup systems of this kind. XML may
help stimulate more of this work.

Watch out for clashing requirements. Prospective (“per-
formative”) markup can be generic, and generic markup
may seek to be either prospective (proleptic) or retro-
spective (metaleptic), or both together. But the more we
try to “describe”, the more difficult we will find it to
validate (in the broadest senses of that term). We should
be careful to distinguish the requirements presumably
served by our design strategies. Academic projects with
a commitment and interest in description of something
external (say, a literary or manuscript text) may have a
particularly difficult time with this—for example, when
an exploratory design clashes with a requirement for in-
terchange. The “descriptive vs. procedural” distinction
can, if we are not careful, muddy the waters here even
further.

New approaches to design: bottom-up. Loose validation
with Draconian error-handling at the syntactic level (e.g.
XML well-formedness)—even if it involves no “valida-
tion” at all in the formal XML sense—should open up
new possibilities for design strategies and methods, as
well as for new applications of markup, including ex-
ploratory modes of markup such as I have described. Up
to this point the design process for a document model
has usually been driven by a top-down analysis, and cen-
tered on D'T'Ds. As long as D'T'Ds provide a useful means
for testing for the kinds of interchange and downstream
processing that have been prominent requirements, this
will continue to be appropriate. But if and as we design
systems and markup languages with other aims—such as,
for example, an exploratory application rather than a
“performative” or direct application of markup to pro-
cessing—other techniques and approaches may prove
useful. What if designs were centered not on DTD val-
idation, but on stylesheets and query sets that provided
meta-information (including validation checks) along
with or in place of their more usual kinds of transfor-
mations? What kind of markup applications would be
well served by such an approach?

New complications include maintenance and over-
sight. Already approaches to XML validation are prolif-
erating. Which of the various approaches now being
tried, both strict and loose, come to be prevalent (and

Extreme Markup Languages 2001

213

Wendell Piez

which approaches in which environments and domains),
is an issue I can’t address. But nothing is either/or here:
just because we use DT'Ds or XML Schema to validate
one set of features to requirements, does not mean we
can’t use other means (stylesheets or query sets, for ex-
ample) for others.

If and as we do this, however, we should be careful
to keep clear what we are doing where, and why. It could
casily become a problem if the same set of constraints
on a document set, or type, comes to be validated
through more than one tool: this would introduce new
problems of parallel maintenance. (It would be like hav-
ing two rulers to measure things, but not being sure they
were the same.) Yet different kinds of validation, and of
tools to do it with, might well be very usefully done at
different stages of a document lifecycle. (Such routines
have been commonplace for years in any case.) When
systems become complex and validation routines over-
lap, it might be helpful to have a “validation validation”
regimen to appeal to. This is what, for example, testing
suites for tools provide —just as standardization has been
managed, again, even since the very first years of inter-
changeable parts.

BIBLIOGRAPHY

[Birnbaum 1997] Birnbaum, David]. In Defense of Invalid SGML.
At http://clover.slavic.pitt.edu/~djb/achallc97 html

[Birnbaum 1998] Birnbaum, David J. The Problem of Anomalous
Data. Markup Technologies "98.

[Bloom 1982] Bloom, Harold. The Breaking of the Vessels. 1982.
The Wellek Library lectures at the University of California, Da-
vis. Frank Lentricchia, Series Ed. Chicago: University of Chi-
cago Press.

[Caton 2000] Caton, Paul. 2000. Markup’s Current Imbalance. Ex-
treme Markup Languages 2000.

[Cover 1998] Cover, Robin. XML and Semantic Transparency. At
http://www.xml.coverpages.org/xmlAndSemantics.html.

[Cover 2001] Cover, Robin. Conceptual Modeling and Markup
Languages. At http://xml.coverpages.org/conceptual-
Modeling html.

[Gentle Introduction] Sperberg-McQueen, C.M., and Lou Bur-
nard, eds. A Gentle Introduction to SGML. In Guidelines for
Electronic Text Encoding and Interchange. 1994, repr. 1997. Chi-

cago, Oxford: Text Encoding Initiative. pp. 13-36. Available on-
line at http://www.uic.edu/orgs/tei/sgml/teip3sg/

[Hollander 1981] Hollander, John. The Figure of Echo. 1981. Berke-
ley, CA: University of California Press.

[Hounshell 1984] Hounshell, David. From the American System to
Mass Production, 1800-1932. 1984, 1985. Baltimore: The Johns
Hopkins University Press.

[Lancashire 1995] Lanchashire, lan. Early Books, RET Encoding
Guidelines, and the Trouble with SGML. At http:/
www.ucalgary.ca/~scriptor/papers/lanc.html

[Lie 1999] Lie, Hikon W. Formatting Objects considered harmful.
At http://www.myopera.com/people/howcome/1999/foch.html.

[McCarty 1999] McCarty, Willard. An Analytical Onomasticon to
the Metamorphoses of Ovid. On-line sampler, August 29, 1999.
At http://ilex.cc.kel.ac.uk/wlm/onomasticon-sampler/.

[Reid 1998] Reid, Brian. 1998. Keynote address to Markup Tech-
nologies '98.

[Renear 2000] Renear, Allen. The Descriptive/Procedural Distinc-
tion is Flawed. Extreme Markup Languages 2000.

[Rockwell 2001] Rockwell, Geoffrey. Private e-mail to the author.
February 20, 2001.

[SGML Handbook] Goldfarb, Charles F. The SGMIL Handbook.
1990. Oxford: Clarendon Press. Annex A. Adapted from Charles
F. Goldfarb, A Generalized Approach to Document Markup, in
SIGPLAN Notices, June 1981.

[Sperberg-McQueen 2000] Sperberg-McQueen, C.M., Claus
Huitfeldt, and Allen Renecar. Meaning and Interpretation of
Markup. Extreme Markup Languages 2000.

[XML 1.0] Extensible Markup Language (XML) 1.0. Second edi-
tion. W3C Recommendation 6 October 2000. At http://
www.w3.0rg/I'R/2000/REC~xml-20001006

BIOGRAPHY

Wendell Piez was born in 1962 in Frankfurt, Germany, and
grew up in various far-flung posts. At Yale and Rutgers, he
studied Classics and English literature, concentrating in po-
etics and aesthetic theory: his college classmates presented
him with an award for being “most likely to quote Plato in a
dinner conversation”. He has worked with markup technol-
ogies since 1994. Currently an XML consultant, systems de-
signer and stylesheet maven at Mulberry Technologies, he
commutes from historic Shepherdstown, West Virginia,
where he frequents the local coffee shop and debates 19th-
century politics with the locals.

214

Extreme Markup Languages 2001

